Subharmonics of a Nonconvex Noncoercive Hamiltonian System
نویسندگان
چکیده
منابع مشابه
Subharmonic solutions of a nonconvex noncoercive Hamiltonian system
In this paper we study the existence of subharmonic solutions of the Hamiltonian system Jẋ + u∗∇G(t, u(x)) = e(t) where u is a linear map, G is a C-function and e is a continuous function.
متن کاملExistence of Minimizers for Nonconvex, Noncoercive Simple Integrals
We consider the problem of minimizing autonomous, simple integrals like
متن کاملSubharmonics with Minimal Periods for Convex Discrete Hamiltonian Systems
and Applied Analysis 3 Lemma 6 (see [12, proposition 2.2]). LetH : R → R be of C 1 and convex functional, −β ≤ H(u) ≤ αq|u| + γ, where u ∈ R, α > 0, q > 1, β ≥ 0, γ ≥ 0. Then αp|∇H(u)| ≤ (∇H(u), u) + β + γ, where 1/p + 1/q = 1. In order to know the form of u ∈ E pT , we consider eigenvalue problem LJΔu (n − 1) = λu (n) , u (n + pT) = u (n) , (12) where u(n) = ( u1(n) u2(n) ), Lu(n − 1) = ( u1(n...
متن کاملAn extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ukrainian Mathematical Journal
سال: 2003
ISSN: 0041-5995
DOI: 10.1023/b:ukma.0000027040.19459.a4